

REDD-ALERT WP3, Planned activities on SOC changes:

Literature review of published case studies of land use change effects on SOC stock in the tropics

- •Field studies to quantify changes in SOC stocks to 3m depth (Indonesia, Cameroon, Peru)
- •Use this information to calibrate and initialize soil components of models used in WP5

A Meta-Analysis of Changes in Soil Carbon Stocks with Tropical Land-use Change

J. Powers, M. Corre, T. Twine & E. Veldkamp

"the current knowledge remains inconclusive on both the magnitude and direction of C stock changes in mineral forest soils associated with forest type, management and other disturbances, and cannot support broad generalizations"

Aalde et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Questions

- How do different land-use changes affect soil C stocks?
- Do biophysical variables determine soil C dynamics following land-use change?
- Can we extrapolate field data to the global scale?

Criteria: -C stocks reported or calculated

- -Clear reference land use
- -included data on climate and soils

Response metric > percent change in soil C stock

% change = ((Xc-Xr)/Xr)*100

Xc = soil C stock current land use

Xr = soil C stock reference land use

How do different land-use changes affect soil C stocks?

Questions

- •How do different land-use changes affect soil C stocks? IT DEPENDS
- Do biophysical variables determine soil C dynamics following land-use change?
- •Can we extrapolate field data to the global scale?

Do biophysical variables determine soil C dynamics following land-use change?

Soil clay mineralogy

allophane & non-crystalline clays

low activity clays (more weathered), e.g. kaolinite

high activity clays (less weathered), e.g. smectite

Precipitation regime

annual rainfall (mm)

Forest to pasture conversion (0-30 cm)

Clay mineralogy class	Annual precipitation class	Mean Percent (Lower and U	N	
	Class	forest to pastu	re conversion	
Allophane	1501 to 2500	7.3	(-33.82, 55.2)	3
•	2501 to 3500	-2.7	(-16.3, 14.1)	7
	>3501	-15.8	(-24.4, -7.3)	5
High activity	<1500	16.4	(-1.8, 37.7)	б
	1501 to 2500	-10.2	(-21.4, -0.5)	7
Low activity	1501 to 2500	26.4	(20.8, 32.2)	79
	2501 to 3500	1.1	(-14.4, 18.1)	9
	>3501	14.1	(-0.7, 29.7)	12

loss

gain

Powers et al, in prep

Pasture to secondary forest conversion (0-30 cm)

Clay mineralogy class	Annual precipitation class	Mean Percent (Lower and U	N				
		pasture to secondary forest conversion					
Allophane	2501 to 3500	4.0	(-5.5, 17.8)	9			
High activity	<1500	16.5	(8.3, 24.1)	4			
	1501 to 2500	10.8	(-0.6, 21.9)	15			
	2501 to 3500	-5.0	(-18.3, 6.9)	8			
Low activity	1501 to 2500	19.0	(1.3, 34.9)	11			
	2501 to 3500	23.6	(4.8, 43.4)	6			
	>3501	32.6	(25.9, 39.2)	4			

loss

gain

Questions

- How do different land-use changes affect soil C stocks? IT DEPENDS
- Do biophysical variables determine soil C dynamics following land-use change? YES
- Can we extrapolate field data to the global scale?

Can we extrapolate field data to the global scale?

Only if the field data correspond to the biophysical conditions in the tropics

Grid cells (N= 2857)

Field observations (N=837)

Chi 2 = 11,789

9%

Caveats

- Limited data for many transitions
- Recent land-cover transitions (e.g. peat land cleari are not represented
- Few data < 30 cm depth
- Data assume rapid equilibration following conversi
- Ignores species effects, management effects, etc

Research in the tropics is geographically biased...

BIOTROPICA 40(4): 397-404 2008

10.1111/j.1744-7429.2007.00393.x

The Geographical and Institutional Distribution of Ecological Research in the Tropics

Gabriela Stocks^{1,5}, Lisa Seales², Franklin Paniagua², Erin Maehr³, and Emilio M. Bruna⁴

Geographic bias in the soil C database precludes spatial extrapolation....

Conclusions

- biophysical factors determine carbon dynamics after land-use change
- field observations are biased towards unrepresentative conditions
- presently, extrapolations from meta-analyses to coarser spatial scales are not warranted

Questions

- How do different land-use changes affect soil C stocks? IT DEPENDS
- Do biophysical variables determine soil C dynamics following land-use change? YES
- Can we extrapolate field data to the global scale? NO

REDD-ALERT WP3, Planned activities on SOC changes:

Literature review of published case studies of land use change effects on SOC stock in the tropics

- •Field studies to quantify changes in SOC stocks to 3m depth (Indonesia, Cameroon, Peru)
- •Use this information to calibrate and initialize soil components of models used in WP5

Landuse trajectories

1. to rubber

(Deforestation)

2. to oil palm
(Deforestation)

Rubber agroforest

3. to oil palm (landscape intensification)

Sampling sites in Jambi

Sampling design

- Clustered design
- One reference site
- Compared with converted landuse
 - Mature oil palm or rubber (different ages >10 yrs)
- Site selection criteria:
 - Landscape position
 - Texture
 - Close proximity (max. distance 5km)

Soil pit samples:

- 2 m depth
- Auger to 2-3 m
- Analysis:
 - C, N, CEC, pH
 - Texture
- Lab analysis planned to be done in Göttingen

Composite sample

- 12 x composite soil samples (0-10, 10-30, 30-50cm)

Bulk density

Fine and coarse root biomass estimation

History of converted landuse

Questionaire:

- Age of current landuse?
- What was the previous landuse? Age of previous landuse
- Management of plantation (fertilization, cutting brush, burning etc.)

Outlook

	2010	2011				2012			2013		
	4th Qrtr	1st Qrtr	2nd Qrtr	3rd Qrtr	4th Qrtr	1st Qrtr	2nd Qrtr	3rd Qrtr	4th Qrtr	1st Qrtr	1st Qrtr
Indonesia	Fieldwo	ork	Lab Data an up		nalysis & write						
Cameroon			Fieldv	Fieldwork Lab anal		sis	Data analysis & write up				
Peru				Fieldv	vork	Lab Data an analysis		nalysis & write			

ISRI Activities:

- 1. Carbon stock and properties of peat under several land use types in Jambi Province, Indonesia
- 2. Interactive effects of water table depth and ameliorant on CO₂ flux
- 3. Microbial Activities as Affected by Peat Maturity, Peat Dryness and Ameliorants

Study site description and sampling

No	Coordinates	Land use	Peat depth	Location	
1	1º 52' 53.5" S 103º 43' 0.6" E	Oil Palm Plantation (13 years old)	Deep (>400 cm)	Ds. Sumberagung, Kec. Sungai Gelam, Kab. Muaro Jambi	PTL
2	1º 01' 48.0" S 103º 19' 52.1" E	Oil Palm Plantation (4 years old)	Shallow (<200 cm)	Ds. Sri Menanti, Kec. Betara, Kab. Tanjung Jabung Barat	SWT
3	1º 01' 27.8" S 103º 19' 42.9" E	Bumt forest, (young oil palm <1 yrs old)	Shallow (<200 cm)	Ds. Sri Menanti, Kec. Betara, Kab. Tanjung Jabung Barat	НТВ
4	1º 01' 26.3" S 103º 19' 33.1" E	Logged Forest	Shallow (<200 cm)	Hutan Lindung Gambut (HLG) Bram Hitam	HLG
5	1º 27' 48.1" S 104º 21' 30.7" E	Primary forest	Deep (>400 cm)	Berbak National Park, Kab. Tanjung Jabung Timur	TNB

- Peat samples were taken from 0-15, 15-30, 30-50, and 50 cm using Eijkelkamp peat augers (for C and bulk density analyses)
- Composite peat samples were taken from the above sites for chemical analyses, C and N with C&N auto analyzer
- Samples are being processed for laboratory analyses

Peat maturity in the study sites

 Peat maturity under 13 yr oil palm plantation (PLT) is more variable than that of primary forest (TNB)

Average Bulk Density of sites studied

PTL: 13 yr oil palm; SWT: 4 yr oil palm; HTB: Burnt forest; HLG: Logged forest; TNB: Primary forest

Correlation matrix of Distance, CO₂ flux, Soil & Air Temperatures and Soil Water Level

Parameters	Distance (m)	CO ₂ flux (t/ha/y)	Soil T (°C)	Air T (°C)	SWL (cm)
Distance (m)	1.000	(-0.535**)	0.161	0.062	0.403**
CO ₂ flux (t/ha/y)		1.000	-0.085 (0.272*	-0.328**
Soil T (°C)			1.000	-0.074	0.004
Air T (°C)				1.000	0.015
SWL (cm)					1.000

SWL (Soil Water Level)

^{* 5%} level of significance

^{**1%} level of significance

REDD-ALERT WP3, Planned activities on N₂O, CH₄ fluxes:

- •Literature review of published case studies of land use change effects on N₂O emissions in tropical agriculture; meta-analysis
- •Field studies in hot-spot area (Indonesia, Jambi) to quantify N₂O fluxes from intensive agriculture following forest clearing
- Special focus on tropical peat forests and intensive land use on cleared peat areas
- •Develop simple relations between biophysical parameters and net GHG emissions as basis for extrapolation: focus on proxies of soil aeration status

Greenhouse gases flux changes associated with land use change in Indonesia

Mineral soils

Pasir Mayang

Desa Harjran

Desa Bukit Suban

Peat soils

Tajung Jabung Barat (shallow peat < 2 m)

Petaling & Berbak national park (deep peat up to 10 m)

Research in sites on mineral soils Forest conversion to oil palm and rubber plantations

1) Changes in soil CO₂, CH₄ and N₂O fluxes

Rainfall, air temperature, soil temperature & moisture, litterfall, mineralization & nitrification potentials, termite population

2) Soil carbon stock change, modeling approach

Soil type characterization, bulk density, total carbon & nitrogen content, C¹³ & N¹⁵

Kristell Hergoualc'h

Research in sites on peat soils Forest conversion to oil palm plantations

Peat and aboveground carbon stocks

Peat physical and chemical properties, water table level, C stocks in peat and aboveground vegetation (trees, understorey, necromass), peat subsidence

2) Root C stocks

Coarse root biomass, biomass C content, tree species inventory

Setiari Marwanto

Research in sites on peat soils Forest conversion to oil palm plantations

Effect of water table depth & N fertilization on soil CO₂, CH₄ and N₂O fluxes in oil palm plantations

Rainfall, air temperature, soil temperature & moisture, water table depth.

Partitioning of **soil respiration** into **autotrophic** and **heterotrophic** components (~ trenching method)

2) Modeling of carbon loss from land use change

Rainfall, air temperature, soil temperature, water table depth, litterfall. Partitioning of **soil respiration** into **autotrophic** and **heterotrophic** components (isotopic method)

Preliminary results on peat soils

Soil respiration

LF → BF-OP1y: due to noot respiration
BF-OP1y → OP5y: due to both root respiration and peat decomposition (vicinity to drainage canal)

2) Coarse root biomass

Logged forest: high root biomass

Burnt forest: still many roots from previous forest

Conversion logged forest-oil palm: loss of 28 +/- 7 Mg C ha-1 from roots

Root biomass (Mg ha⁻¹ 10cm⁻¹)

Preliminary results on mineral soils

Preliminary results on mineral soils

Thank you!

